were determined. Moreover, interatomic distances in the Ta_6Cl_{18} unit are in good agreement with the corresponding distances reported for such a unit (Brničević, Ružić-Toroš, Kojić-Prodić, 1985; Slougui *et al.*, 1989).

References

- BATAIL, P. & OUAHAB, L. (1985). Mol. Cryst. Liq. Cryst. 125, 205-214.
- BATAIL, P., OUAHAB, L., PENICAUD, A., LENOIR, C. & PERRIN, A. (1987). C. R. Acad. Sci. Paris, 304, 1111–1116.

BRNIČEVIĆ, N., RUŽIĆ-TOROŠ, Z. & KOJIĆ-PRODIĆ, B. (1985). J. Chem. Soc. Dalton Trans. pp. 455–458.

- FRENZ, B. A. (1978). The Enraf-Nonius CAD-4 SDP A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI. Delft Univ. Press.
- OUAHAB, L. (1985). Thèse de doctorat d'état, Rennes, France.
- OUAHAB, L., BATAIL, P., PERRIN, C. & GARRIGOU-LAGRANGE, C. (1986). Mater. Res. Bull. 21, 1223–1230.

PENICAUD, A. (1988). Thèse de l'Université de Rennes I, France.

- PENICAUD, A., BATAIL, P., COULON, C., CANADELL, E. & PERRIN, C. (1990). Chem. Mater. 2, 123-132.
- PENICAUD, A., BATAIL, P., PERRIN, C., COULON, C., PARKIN, S. S. P. & TORRANCE, J. B. (1987). J. Chem. Soc. Chem. Commun. pp. 330–332.
- SLOUGUI, A., OUAHAB, L., PERRIN, C., GRANDJEAN, D. & BATAIL, P. (1989). Acta Cryst. C45, 388-391.

Acta Cryst. (1991). C47, 1721-1723

Lewis-Base Adducts of Group 11 Metal(I) Compounds. 60. Binuclear Adducts of Copper(I) Halides with 2-Hindered Pyridine Bases

BY PETER C. HEALY

School of Science, Griffith University, Nathan, Australia 4111

AND JOHN D. KILDEA, BRIAN W. SKELTON, A. FIONA WATERS AND ALLAN H. WHITE

Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, Australia 6009

(Received 22 June 1990; accepted 8 November 1990)

Abstract. (I): Di- μ -bromo-bis[bis(2-bromopyridine)copper(I)], [Cu₂Br₂(C₅H₄BrN)₄], $M_r = 918 \cdot 9$, triclinic, $P\overline{1}$, $a = 10 \cdot 224(4)$, $b = 8 \cdot 935(2)$, $c = 7 \cdot 892(2)$ Å, $\alpha = 68 \cdot 84(2)$, $\beta = 71 \cdot 96(3)$, $\gamma = 83 \cdot 23(3)^\circ$, V = 639(1) Å³, Z = 2, $D_x = 2 \cdot 39$ g cm⁻³, Mo K α radiation, $\lambda = 0.71069$ Å, $\mu = 109$ cm⁻¹, F(000) = 864, T = 293 K, final R = 0.052. (II): Di- μ -chloro-bis[bis(2benzylpyridine)copper(I)], [Cu₂Cl₂(Cl₂H₁₁N)₄], $M_r = 874 \cdot 9$, triclinic, $P\overline{1}$, $a = 16 \cdot 441(5)$, $b = 9 \cdot 183(5)$, $c = 7 \cdot 661(2)$ Å, $\alpha = 76 \cdot 87(4)$, $\beta = 81 \cdot 65(3)$, $\gamma = 73 \cdot 17(4)^\circ$, V = 1074(1) Å³, Z = 2, $D_x = 1 \cdot 35$ g cm⁻³, Mo K α radiation, $\lambda = 0.71069$ Å, $\mu = 8 \cdot 1$ cm⁻¹, F(000) = 452, T = 293 K, final R = 0.047.

Experimental. (I): Prism, dark red-brown, crystal size $0.44 \times 0.35 \times 0.20$ mm, scintillation detector. Diffraction measurement method: $2\theta/\theta$, diffraction temperature 293 K. Absorption correction type: analytical. T_{\min}, T_{\max} not recorded. $\theta_{\min} = 2.09$, $\theta_{\max} = 27.47^{\circ}$; $h \ 0 \rightarrow 13$, $k - 11 \rightarrow 11$, $l - 9 \rightarrow 10$. Six standard reflections, measured every 100 reflections, intensity variation 0%. Criterion for observed reflections: $l > 3\sigma(l)$. Full-matrix least-squares refinement, 1909 reflections 'observed' out of 2934 independent measured; number of parameters in least-squares refinement 145, wR(all reflections) = 0.061,

wR(observed reflections) = 0.059, *S*(all reflections) = 2.29, *S*(observed reflections) = 2.77, weights based on measured σ 's; $(\Delta/\sigma)_{max} = 0.088$, $(\Delta/\sigma)_{mean} = 0.004$, $\Delta\rho_{max} = 0.966$, $\Delta\rho_{min} = -0.946$ e Å⁻³, no correction for secondary extinction.

(II): Plate, colourless, crystal size $0.5 \times 0.2 \times$ 0.03 mm, scintillation counter. Diffraction measurement method: $2\theta/\theta$, diffraction temperature 293 K. Absorption correction type: Gaussian. $A_{\min}^* = 1.03, A_{\max}^* = 1.17$. $\theta_{\min} = 1.30, \ \theta_{\max} = 24.99^\circ; \ h \ 0 \rightarrow 19, \ k - 10 \rightarrow 10, \ l$ $-8 \rightarrow 9$. Eight standard reflections, measured every 100 reflections, intensity variation 0%. Criterion for observed reflections: $I > 3\sigma(I)$. Full-matrix least-squares refinement, 2189 reflections 'observed' out of 3778 independent measured; number of parameters in least-squares refinement 254, R(all reflections) = 0.098, wR(all reflections) = 0.057, wR(observed reflections) = 0.050, S(all reflections) = 1.26, S(observed reflections) = 1.48, weights based on measured σ 's; $(\Delta/\sigma)_{max} = 0.101$, $(\Delta/\sigma)_{mean} = 0.012, \ \Delta\rho_{max} = 0.370, \ \Delta\rho_{min} = -0.368$ e $Å^{-3}$, Gaussian extinction correction (Zachariasen, 1963), secondary-extinction coefficient = 0.131.

Data collection: Enraf-Nonius CAD-4 software. All calculations and diagrams were performed with the *XTAL3.0* package (Hall & Stewart, 1990), as was the

0108-2701/91/081721-03\$03.00

© 1991 International Union of Crystallography

H216

H217 H222 H223 H224 H225 H226

Table 1. Atomic positional parameters and equivalentisotropic thermal parameters (Å2)

Table 1 (cont.)

$U_{eq} = (1/3) \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \mathbf{a}_j.$							
Compound (I)	x	у	Z	$U_{ m eq}$			
Rrl	0.0774(1)	0.9321(1)	0.7008(1)	0.045(1)			
Br12	0.0774(1)	0.5788(1)	0.5870(2)	0.061(1)			
Br22	0.2691(1)	1.1045(1)	-0.1067(1)	0.055(1)			
Cul	0.1441(1)	0.9325(1)	0.3674(2)	0.035(1)			
NII	0.1529(8)	0.7204(8)	0.320(1)	0.035(7)			
C12	0.1961(9)	0.579(1)	0.413(1)	0.037(9)			
C13	0.181(1)	0.437(1)	0.394(1)	0.05(1)			
C14	0.118(1)	0.441(1)	0.260(2)	0.05(1)			
C15	0-073(1)	0.585(1)	0.156(1)	0.05(1)			
C16	0.090(1)	0.720(1)	0-190(1)	0.041(9)			
N21	0.3170(8)	1.0772(8)	0-228(1)	0.040(8)			
C22	0.362(1)	1.152(1)	0.042(1)	0.05(1)			
C23	0.471(1)	1.255(1)	-0.048(2)	0.07(1)			
C24	0-536(1)	1.285(1)	0.061(2)	0.08(2)			
C25	0.492(1)	$1 \cdot 209(1)$	0.257(2)	0.07(1)			
C26	0.383(1)	1.105(1)	0.335(2)	0.05(1)			
H13	0.2142	0.3391	0.4685	0.06206			
	0.0217	0.5009	0.2438	0.00586			
пі. ніс	0.0563	0.8206	0.1104	0.05446			
H23	0.5015	1.3035	-0.1807	0.07472			
H24	0.6104	1.3593	0.0060	0.09372			
H25	0.5382	1.2259	0.3363	0.09625			
H26	0.3528	1.0526	0.4693	0.06839			
	0 0020	. 0520	0 1075	0 00000			
Compound (II)							
Cul	0.08803(4)	1.02385(8)	0.4594(1)	0.0532(7)			
CII	0.03152(8)	0.8583(1)	0.7276(2)	0.047(1)			
NI	0.0998(3)	1.2004(4)	0.5599(6)	0.041(4)			
NZ	0.1073(2)	0.86/8(4)	0.3225(5)	0.039(4)			
	0.11223(3)	1.3257(6)	0.458/(8)	0.04/(5)			
C112	0.0820(4)	1.4508(7)	0.328(1) 0.704(1)	0.073(7)			
C114	0.0620(4)	1.3310(7)	0.2004(1)	0.066(6)			
CIIS	0.0706(4)	1.2052(6)	0.7331(8)	0.052(5)			
C116	0.1582(4)	$1 \cdot 3140(7)$	0.2698(9)	0.052(5)			
C121	0.2499(4)	1.2175(7)	0.256(1)	0.069(7)			
C122	0.3088(5)	1.2226(8)	0-363(1)	0.087(8)			
C123	0.3933(6)	1.134(1)	0.350(2)	0.12(1)			
C124	0.4171(7)	1.043(1)	0.223(2)	0.15(2)			
C125	0.3618(9)	1.032(1)	0.120(2)	0.14(1)			
C126	0.2771(6)	1.122(1)	0.132(1)	0.092(9)			
C211	0.2412(3)	0.7751(6)	0.3822(7)	0.040(5)			
C212	0.2937(3)	0.6695(7)	0.2850(7)	0.053(5)			
C213	0.2/16(4)	0.6571(7)	0.1251(8)	0.066(6)			
C214 C215	0.1456(3)	0.749/(7)	0.0643(7)	0.062(6)			
C215	0.1430(3) 0.2627(3)	0.8341(0)	0.1057(7)	0.050(5)			
C210	0.2027(3)	0.6650(6)	0.5380(7)	0.032(3)			
(222)	0.4069(4)	0.6882(7)	0.6685(0)	0.064(6)			
C223	0.4707(4)	0.0002(7)	0.753(1)	0.085(8)			
C224	0.4589(5)	0.4266(9)	0.811(1)	0.083(8)			
C225	0.3844(5)	0.3994(7)	0.7913(9)	0.073(7)			
C226	0-3185(4)	0.5198(7)	0.7094(8)	0.058(6)			
H112	0.1287	1.5476	0.4490	0.10626			
H113	0.0763	1.5521	0.7483	0.12247			
H114	0.0386	1.3323	0.9368	0.11209			
H115	0-0559	1.1137	0.8078	0.08878			
H116	0.1239	1.2690	0.2162	0.11601			
H117	0.1546	1.4167	0-1986	0.11601			
H122	0.2907	1.2892	0.4519	0.14122			
n123	0.4721	1.1346	0.4263	0.17693			
n124	0.2792	0.9832	0.2000	0.18605			
n123 U126	0.2246	0.9017	0.0330	0.14400			
n120 11212	0.2472	1.11//	0.0041	0.14489			
H212	0.3002	0.5822	0.0575	0.00720			
H213	0.1777	0.7417	-0.0481	0.00067			
H215	0.0916	0.9216	0.1236	0.08131			

x	у	2	U_{eq}
0.2806	0.8898	0.5379	0.09891
0.2124	0.8080	0.6407	0.09891
0.4159	0.7916	0.6241	0.10081
0.5240	0.5894	0.7701	0.12817
0.5050	0.3428	0.8678	0.11715
0-3775	0.2966	0.8314	0.10968
0.2642	0.5008	0.6981	0.09144

Fig. 1. Molecules of the two complexes projected normal to their CuX_2Cu planes; each dimer is centrosymmetric. 20% thermal ellipsoids are shown for the non-hydrogen atoms; hydrogen atoms when shown have arbitrary radii of 0.1Å.

generation of the Crystallographic Information File used for the submission of this paper. Atomic coordinates are listed in Table 1.* Fig. 1 shows molecules of the two complexes.

Related literature. 1:2 adducts of copper(I) halides, CuX (X = Cl, Br, I) with monodentate nitrogen ligands, L, commonly adopt two forms: a binuclear μ , μ' dihalo-bridged structure $L_2CuX_2CuL_2$, containing fourcoordinated copper(I), and mononuclear L_2CuX containing three-coordinate copper. The latter is obtained by the recrystallization of the copper(I) halide from solution in pyridine bases hindered with methyl groups in both 2- and 6-positions, such as 2,6-dimethylpyridine (Healy, Pakawatchai & White, 1983; Dyason, Healy,

^{*} Lists of structure factors, anisotropic thermal parameters and complete lists of bond distances and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53794 (27 pp.). Copies may be obtained through the Technical Editor, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Bond distances (Å) and angles (°)

Compound (I) Br1—Cu1 Br1—Cu1' Cu1—N11 Cu1—N21	2·504(2) 2·553(2) 2·048(8) 2·077(8)	Compound (II) Cu1—Cl1 Cu1—N1 Cu1—N2 Cu1—Cu1' Cu1—Cu1'	2·498(2) 2·013(5) 2·014(4) 3·008(1) 2·443(2)
Cu1—Br1—Cu1'	85.02(6)	Cu1-Cl1-Cu1'	74.98(6)
Br1—Cu1—N11	119.6(2)	Cl1-Cu1-N1	103.1(1)
Br1—Cu1—N21	104.5(3)	Cl1-Cu1-N2	103.2(1)
Br1—Cu1—Br1'	94.98(6)	Cl1-Cu1-Cl1'	105.03(6)
N11—Cu1—N21	116.8(3)	N1-Cu1-N2	135.0(2)
N11—Cu1—Br1'	104.7(2)	N1-Cu1-Cl1'	104.0(1)
N21—Cu1—Br1'	114.5(2)	N2-Cu1-Cl2'	103.5(1)

Pakawatchai, Patrick & White, 1985), while binuclear species may be obtained by direct recrystallization of the copper(I) halide from solution in a pyridine base with carbon substituent in the 2-position only, as with 2-methylpyridine or quinoline (Healy, Pakawatchai & White, 1983; Dyason, Engelhardt, Healy, Pakawatchai & White, 1985), or with a 1:2 stoichiometry from an appropriate supporting solvent. In exploring further the role and volume of the 2-substituent in controlling stoichiometry and structure in the adducts, we have determined the structures of these further adducts with 2-substituted pyridine ligands, the substituents being benzyl and bromo moieties, and record the structure determinations hereunder, with copper(I) chloride and bromide respectively, as 1:2 binuclear dimers. By comparison with selected studies in the above references, the N₂CuX₂CuN₂ molecular core geometries (Table 2) are unremarkable.

References

- DYASON, J. C., ENGELHARDT, L. M., HEALY, P. C., PAKAWATCHAI, C. & WHITE, A. H. (1985). *Inorg. Chem.* 24, 1950–1957.
- DYASON, J. C., HEALY, P. C., PAKAWATCHAI, C., PATRICK, V. A. & WHITE, A. H. (1985). *Inorg Chem.* 24, 1957–1960.
- HALL, S. R. & STEWART, J. M. (1990). Editors. XTAL3.0 Reference Manual. Univs. of Western Australia, Australia, and Maryland, USA.
- HEALY, P. C., PAKAWATCHAI, C. & WHITE, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 1917–1927.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139–1144.

Acta Cryst. (1991). C47, 1723-1725

Structure of $[LFe(\mu-MoO_4)_3FeL]$.CH₂Cl₂.H₂O (L = 1,4,7-Trimethyl-1,4,7-triazacyclononane)

BY KEVIN LETTKO, SHUNCHENG LIU AND JON ZUBIETA*

Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA

(Received 31 August 1990; accepted 13 February 1991)

Abstract. Tri- μ -molybdato(2-)-bis[(1,4,7-trimethyl-1,4,7-triazacyclononane)iron(III)]-dichloromethanewater (1/1/1), [Fe₂(MoO₄)₃(C₉H₂₁N₃)₂].CH₂Cl₂.H₂O, $M_r = 1037.0$, orthorhombic, *Pbca*, a = 15.239 (2), *b* = 16.376 (3), c = 28.964 (4) Å, V = 7227.9 (17) Å³, $D_x = 1.91 \text{ g cm}^{-3}, Z = 8, \lambda (\text{Mo } K\alpha) = 0.71073 \text{ Å}, \mu$ $= 19.8 \text{ cm}^{-1}$, F(000) = 4144, T = 293 K, R = 0.047, wR = 0.051 for 2457 observed reflections. The structure consists of a tri- μ -molybdato-diiron(III) molecular cluster, similar to that of [LFe(CrO₄)₃-FeL].H₂O (L = 1,4,7-trimethyl-1,4,7-triazacyclononane) [Chaudhuri, Winter, Wieghardt, Gehring, Haase, Nuber & Weiss (1988). Inorg. Chem. 27, 1564–1569]. The synthesis from acetonitrile affords a convenient preparation of crystalline complex and avoids the use of perchlorate salts. The complex provides an unusual example of an early-transitionmetal polyoxoanion which is neutral, rather than

0108-2701/91/081723-03\$03.00

anionic as is the case with the vast majority of polyoxometalate species [Pope (1983). *Heteropoly and Isopoly Oxometalates*. Berlin: Springer-Verlag].

Experimental. The title compound (I) was obtained from the reaction of $(C_9H_{21}N_3)$ FeCl₃ (Chaudhuri, Winter, Wieghardt, Gehring, Haase, Nuber & Weiss, 1988) and $[(C_4H_9)_4N]_2[Mo_2O_7]$ (Day, Fredrich, Klemperer & Shum, 1977) (1:2.5) in refluxing acetonitrile, followed by recrystallization from dichloromethane/methanol (2:1).

^{*} To whom correspondence should be addressed.

^{© 1991} International Union of Crystallography